Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation.
نویسندگان
چکیده
Deficiency of subunit 6 of the conserved oligomeric Golgi (COG6) complex causes a new combined N- and O-glycosylation deficiency of the congenital disorders of glycosylation, designated as CDG-IIL (COG6-CDG). The index patient presented with a severe neurologic disease characterized by vitamin K deficiency, vomiting, intractable focal seizures, intracranial bleedings and fatal outcome in early infancy. Analysis of oligosaccharides from serum transferrin by HPLC and mass spectrometry revealed the loss of galactose and sialic acid residues, whereas import and transfer of these sugar residues into Golgi-enriched vesicles or onto proteins, respectively, were normal to slightly reduced. Western blot examinations combined with gel filtration chromatography studies in patient-derived skin fibroblasts showed a severely reduced expression of the mentioned subunit and the occurrence of COG complex fragments at the expense of the integral COG complex. Sequencing of COG6-cDNA and COG6 gene resulted in a homozygous mutation (c.G1646T), leading to amino acid exchange p.G549V in the COG6 protein. Retroviral complementation of the patients' fibroblasts with the wild-type COG6-cDNA led to normalization of the COG complex-depending retrograde protein transport after Brefeldin A treatment, demonstrated by immunofluorescence analysis.
منابع مشابه
Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II.
The conserved oligomeric Golgi (COG) complex is a heterooctameric complex that regulates intraGolgi trafficking and the integrity of the Golgi compartment in eukaryotic cells. Here, we describe a patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex. This patient has a defect in both N- and O-glycosyla...
متن کاملDeficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation.
Processing of the glycan structures on glycoproteins by different glycosylation enzymes depends on, among other, the non-uniform distribution of these enzymes within the Golgi stacks. This compartmentalization is achieved by a balance between anterograde and retrograde vesicular trafficking. If the balance is disturbed, the glycosylation machinery is mislocalized, which can cause Congenital Dis...
متن کاملCOG5-CDG: expanding the clinical spectrum
BACKGROUND The Conserved Oligomeric Golgi (COG) complex is involved in the retrograde trafficking of Golgi components, thereby affecting the localization of Golgi glycosyltransferases. Deficiency of a COG-subunit leads to defective protein glycosylation, and thus Congenital Disorders of Glycosylation (CDG). Mutations in subunits 1, 4, 5, 6, 7 and 8 have been associated with CDG-II. The first pa...
متن کاملGenetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: studies of COG5- and COG7-deficient mammalian cells.
The conserved oligomeric Golgi (COG) complex is an eight-subunit (Cog1-8) peripheral Golgi protein involved in Golgi-associated membrane trafficking and glycoconjugate synthesis. We have analyzed the structure and function of COG using Cog1 or Cog2 null Chinese hamster ovary cell mutants, fibroblasts from a patient with Cog7-deficient congenital disorders of glycosylation, and stable Cog5-defic...
متن کاملGolgi function and dysfunction in the first COG4-deficient CDG type II patient
The conserved oligomeric Golgi (COG) complex is a hetero-octameric complex essential for normal glycosylation and intra-Golgi transport. An increasing number of congenital disorder of glycosylation type II (CDG-II) mutations are found in COG subunits indicating its importance in glycosylation. We report a new CDG-II patient harbouring a p.R729W missense mutation in COG4 combined with a submicro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 19 18 شماره
صفحات -
تاریخ انتشار 2010